Total No. of Pages :3

Seat No.

M.B.A. (Part-I) (Semester-I) Examination, 2013 MATHEMATICS AND STATISTICS FOR MANAGEMENT

(Paper - III)

Sub. Code: 48322

Day and Date: Friday 31-05-2013

Total Marks: 70

Time: 10.00 a.m. to 1.00 p.m.

Instructions:

- 1) Question numbers 1 and 5 are compulsory.
- 2) Attempt any two questions from the remaining question numbers 2 to 4.
- 3) Figures to the right indicate full marks.
- 4) Use of non programmable calculator is allowed.
- Evaluate Q1) a) **i**)

1)
$$\lim_{x \to 1} \left[\frac{2}{1-x^2} + \frac{1}{x-1} \right]$$

1)
$$\lim_{x \to 1} \left[\frac{2}{1 - x^2} + \frac{1}{x - 1} \right]$$
 2)
$$\lim_{x \to 0} \left[\frac{x}{\sqrt{x + a} - \sqrt{a}} \right]$$

- Find the minimum average cost, if the cost function is given by (ii $C = 36x - 10x^2 + 2x^3$
- State the relationship between correlation coefficient and regression coefficient and verify them by using following data.

X	2	3	4	7	6
Y	10	7	3	1	2

[10+10]

Q2) a) i) Find $\frac{dy}{dx}$ for the following and an analysis of the property and a second state of the property and the prop

1)
$$y = \frac{x^2 + 1}{x^2 - 1}$$

1)
$$y = \frac{x^2 + 1}{x^2 - 1}$$
 2) $y = (x^2 + 2x + 3)^{5/2}$

Define Time Series and state its components. Compute three yearly ii) moving averages from the following data.

Year	2004	2005	2006	2007	2008	2009	2010
Sale	14	15	10	8	9	11	12

b) Define inverse of a matrix. Show that the inverse of matrix

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
 exists and find its inverse.

(Crashell Classe)

[8+7]

- Q3) a) i) Find the polynomial function of the lowest degree, if f(0)=8, f(1)=11, f(4)=68, f(5)=123.
 - ii) Find the compound interest on the sum of Rs. 7865 for 4 years at $3\frac{1}{2}\%$ p.a.
 - b) Define square matrix. If $A = \begin{bmatrix} 5 & 4 \\ 4 & 3 \end{bmatrix}$, $B = \begin{bmatrix} -3 & 4 \\ 4 & -5 \end{bmatrix}$ then show that AB=BA and AB is a non-singular matrix.

[8+7]

Q4) a) Define Coefficient of Variation [C.V.]. Following data gives number of catches taken by Tendulkar and Dhoni. Find out who is consistent in taking the catches?

Catches taken by Tendulkar	4	5	4	3	5
Catches taken by Dhoni	1	0	4	2	1

b) State the equations of two regression lines.

From 10 observations on price(X) and supply(Y) of a commodity the following data were obtained.

$$\sum X=130$$
, $\sum Y=220$, $\sum X^2=2288$, $\sum XY=3467$

Compute the equation of the line of regression of Y on X and estimate the supply when price is 16.

[8+7]

Regu-H - 320

Q5) Attempt any Four:

[20]

a) Define Index number. Calculate price index number by using

i) Simple aggregate method ii) Simple average of relative method

Commodity	A	В	C	D
Base year price	2	4	10	50
Current year price	3	5	12	60

b) Define Correlation. Interpret, if (i) r=+1, (ii) r=-1, (iii) r=0, where r is correlation coefficient between two variables.

c) Explain the construction of control chart. State the uses of S.Q.C.

d) Solve the following equations by Cramer's rule.

$$4x-3y=17, 5x+y=7$$

e) If $A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$, find a matrix X such that AX=I, where I is unit matrix.

f) Define S.D. Calculate mean and S.D. for the data given below.

Class	0-10	10-20	20-30	30-40	40-50
Frequency	7	12	24	10	7